
iCC 2013 CAN in Automation

 02-1

High-Speed Reprogramming and Calibration with
CAN FD: A Case Study

Armin Happel, Erik Sparrer, Oliver Kitt, Oliver Garnatz, Peter Decker

Vector Informatik GmbH

Reprogramming of ECUs as well as their in-vehicle calibration are typical and
important automotive use cases requiring high data rates.
To meet the high timing requirements for reprogramming, techniques such as data
reduction and parallelization have been used to optimize for CAN. Faster data
protocols such as FlexRay and Ethernet have also been introduced. The first part of
this case study compares these well-known and practice-proved measures with the
capabilities of CAN FD. In particular its influences on the transport protocol and
write/erase times of current hardware devices are demonstrated using a real
environment.
For in-vehicle measurement and calibration the ASAM XCP Working Group already
has extended the current version 1.2 to include the XCP transport layer for CAN FD.
The second part of this case study shows the potential of increased data throughputs
now possible with CAN FD due to the higher payload size of 64 bytes. Also shown are
possible future XCP protocol enhancements which support simple portability of
existing AUTOSAR ECU implementations of the XCP slave.

High Speed Flash Programming

Due to the continuous raising complexity
of ECUs and its software sizes, a fast and
efficient way to re-program In-Vehicle
ECUs has become more and more
important. The improvements in the past
have been driven mainly by two factors:
optimal performance of the flash download
sequence, and introduction of newer and
faster bus systems such as FlexRay,
Ethernet or CAN FD.
As shown in Figure 1, the flash download
can be divided into the three sequential
phases, erase the flash memory,
download and program segments of the
software and afterwards verify if the data
have been written successfully.

Figure 1: Programming phases
Optimizations have been concentrated to
the download and programming phase.
Since in most cases, the amount of data

appears to be the bottleneck, the first
approach was to apply a compression
method which is adequate in performance
and code reduction. In most cases, the
LZSS1 has shown a very good balance
between compression rates compared to
the resource utilization in small- and mid-
sized microcontrollers. This can already
provide a significant reduction in code size
and download time of about 20-40% for
little cost. The results are highly dependent
on the entropy of data, but also on the
performance of the microcontroller.
A further way to improve the download
time is the introduction of “Pipelined
Programming” (aka ‘Early-Acknowledge’ or
‘Double-Buffering’). The idea is to
acknowledge the diagnostic service
request “TransferData” immediately before
the received data has been written to the
flash memory. The message is then
written to flash while the next one is
received. Figure 2 shows the details of the
diagnostic service flow.

1Lempel-Ziv-Storer-Szymanski-Algorithm, a method to
mark redundancy in a data stream.

iCC 2013 CAN in Automation

02-2

Figure 2: Optimize the download time with
Pipelined programming.
Pipelined Programming shows the most
beneficial effect when the data processing
and programming time is smaller than the
transmission time of a data segment. Even
the combination with data compression
provides an advantage when both can be
done in parallel to the data reception.
Since code can typically not be executed
out of flash memory while it is
programmed, the code parts for
programming and communication must be
executed out of RAM. In the following, an
overview of the reprogramming time on
different bus systems will be given,
including CAN FD.

Programming with FlexRay

FlexRay is a time-triggered protocol with a
bus speed of up to 10 Mbit/sec. All nodes
on one network require a unique
configuration for static and dynamic slots,
slots per cycle, etc. The configuration is
quite complex and essential to the
performance of the system. On one hand
the application requires space in the static
slot for a reliable and time-triggered
communication. On the other hand it is
desirable to have several PDUs in one
cycle with large payload for a fast
diagnostic communication, e.g. for
flashing, even though it’s been used only
in an exceptional case. A typical
configuration uses 4-8 PDUs in one cycle
each with payload from 42 to 255 bytes for
diagnostic communication between the
tester and the ECU. For more PDUs in one
cycle the FlexRay schedule needs to be
switched to a separate reprogramming
cycle.

Figure 3: FlexRay configuration
For a fast reaction to a service request
from the ECU, transmission of responses
should be possible in subsequent cycles,
e.g. in subsequent or periodically in every
4th cycle.

Figure 4: Transmission rate with FlexRay
communication (without programming)
It can be seen in Figure 4 that the slot
configuration has high influences to the
data throughput, also the number of PDUs
per cycle and the buffer size allocated for
the TransferData service.
Table 1 shows the transfer and
programming time that can be achieved on
a typical FlexRay bus configuration. The
measures were taken from a configuration
with 8 PDUs per cycle and 42 bytes
payload, and 6 PDUs per cycle and 255
bytes payload. The measure was taken
with real programming sequentially and
with pipelined programming.

Table 1: Transfer and programming time
on FlexRay (kByte/sec)

FlexRay
configuration

Download rate (Kbyte/sec)
Conventional
Programming

Pipelined
Programming

8 PDUs/cycle
42 bytes / PDU 32-34 ~40

6 PDUs/cycle
255 bytes/PDU 40 60

iCC 2013 CAN in Automation

02-3

Programming with Ethernet

ISO13400-2 specifies the communication
for Diagnostics over IP (DoIP). This
protocol is also used for re-programming
ECUs over Ethernet. The relevant
diagnostic communication is done over the
TCP protocol. The next figure shows the
architecture of an Ethernet Bootloader.

Figure 5: Architecture of an Ethernet
Bootloader

This Bootloader has been implemented on
a microcontroller where the pure flash
write time takes about 180kByte/sec.
Experimental downloads with a bus speed
of 100Mbit were done with different buffer
sizes for the TransferData-service to see
the influence of this parameter. The results
are listed in the table below.
Table 2: Transfer and programming time
(kByte/sec) on Ethernet with different
TransferData buffer sizes.

TransferData
buffer size

Download rate
(Kbyte/sec)

1 kB 95
4 kB 133

16 kB 150

Pipelined Programming has not been
applied here. The size of the transfer
segmentation has a direct influence on the
download time. When using a 16kB buffer
for one transfer segment, the download
time reaches almost the throughput of the
flash memory. The proportion of the data
transmission time over Ethernet becomes
relatively low compared to the write access
time to the flash memory.

Programming with CAN and CAN FD

In this chapter measures of the rates with
CAN and CAN FD are discussed. Since
semiconductor manufacturers are still
working on micros with an integrated CAN
FD controller, an evaluation board was
chosen where an FPGA with the BOSCH
IP macros for CAN FD is connected to a
microcontroller board.

Figure 6: CAN FD Hardware environment
for the evaluation project

A standard UDS CAN-boot loader-
Software (FBL) has been used on the
microcontroller. Only the communication
specific layers needed to be adapted. The
CAN-driver was exchanged to support the
features of the CAN FD ASIC to transmit
CAN-frames with up to 64 byte and bit rate
switch (BRS) from 500kBaud up to 4
MBaud. The transport layer was based on
an extension of the ISO15765-2 protocol
as currently discussed in ISO. The
segmented data transfer service has been
kept to a maximum size of 4095 bytes.
This reduced the necessary extensions to
the transport layer to a minimum. CANoe
has been chosen as the download tool to
perform the software download. The flash
programming sequence and the transport
layer functionality were implemented in a
DLL used by CANoe. The architectural
overview of the measurement system is
shown in the figure below.

iCC 2013 CAN in Automation

02-4

Figure 7: Architecture of the CAN FD
Bootloader evaluation project.
The theoretical transmission rate on CAN
of the ISO15765-2 transport layer with
block size and STmin set to 0 provides an
average transmission rate of 26-28
kByte/sec with 500 kBaud. On CAN FD,
the DLC can be increased up to 64 which
reduce the number of CAN-frames from
586 CAN frames down to 66 frames for a
4095 byte message. Using BRS with
4MBaud the transfer rate for 4095 bytes
takes theoretically 270-370 kByte/sec. In
practice the overall download was
measured and programming time with
DLC=8, without (500 kBaud) and with BRS
(4 MBaud); and with DLC=64, without and
with BRS were applied. The following
figure shows the resulting transfer and
programming rate for CAN and CAN FD.

Figure 8: Transfer and programming time
in comparison to CAN and CAN FD.
With DLC=8, without BRS, the overall
programming time is getting close to the
capability of the ISO15765 protocol on
500kBaud. But using CAN FD with BRS a
download and programming time with
more than 80kByte/s can be reached. This
is far away from the theoretical capabilities
of the bus, because now the flash
programming time of the internal memory

becomes a limiting factor. Faster flash
programming time would be required to
speed up the download time.
Even though these impressive data rates
already exceed the capabilities of FlexRay,
we want to further analyze the effect of
compression and pipelining in combination
with CAN FD.

Figure 9: Download with CAN and CAN
FD using plain, compressed, pipelined and
combined programming.
The diagram shows (in blue) an advantage
of pipelined and compressed download
with 500kBaud. The combination of
pipelining and decompression further
increases the download time in this
configuration to 38kB/sec. As long as the
transmission of a message takes longer
than the decompression and
programming, both methods shows an
advantage. With CAN FD the portion of
time for data transmission is very low
compared to the programming time (ttr <<
tprog). Therefore, the pipelining shows only
minor improvements. It becomes even
worse if compression is used. In this case,
the CPU-time for decompression will be
added to the download time and provides
the contrary effect. The following figure
illustrates the execution time and the
delaying effect of the decompression.

Figure 10: CPU dispatching for plain,
pipelined and pipelined&compessed
download

iCC 2013 CAN in Automation

02-5

It must be noted, that the programming
library and the CPU performance were not
optimal for this evaluation. Further
measurements must be taken on other
microcontrollers to measure the beneficial
factors of pipelining and decompression.
The measures show the capabilities of
CAN FD to improve the download time.
We can expect that now the programming
time of the flash memory and the
performance of the microcontroller will
become the limiting factor for the overall
programming time of an ECU.

Conclusion

Even though the measurements on the
different buses have been taken on
different controllers and therefore they are
difficult to compare, a tendency can be
seen that with Ethernet and CAN FD
currently the bus speed exceeds the limits
and the flash write time becomes now the
limiting factor. This seems not to be the
case for CAN and FlexRay.
Ethernet shows the best performance,
especially on 100Mbit buses. However, the
complexity of the communication stack
and network configuration is high and also
higher costs for the hardware are
expected.
The FlexRay bus requires tricky
configuration of the schedule to achieve a
satisfactorily download performance, and
this competes with the real-time data
transmission in the static slot fields. The
software complexity of the communication
modules is higher than for CAN or CAN
FD, but less than for Ethernet.
Pipelined Programming shows benefits in
all configurations but is limited for CAN FD
and Ethernet.

Outlook

The increasing complexity of in-vehicle
functions will result in an increased
amount of code size. Fast buses are
required to provide a faster reprogramming
time of ECU software during development
and for series production.

CAN FD shows the capability to provide
the performance in the future with
adequate costs for software and hardware.
Nowadays, the flash write time seem to
become the limiting factor then, but steady
improvements from chip manufacturers in
flash erase and write time will then show
benefits to the software download time.
Thorough software architecture and data
handling will be needed in the future within
the boot loader to fetch full performance.

In-Vehicle Measurement and
Calibration

The second part of this paper focuses on
the data transfer capabilities available for
calibration proposes using XCP on CAN
FD. First the interchangeability of CAN
and CAN FD is explained by means of the
Open System Interconnection Model. The
subsequent analytical part provides a
mathematical model to evaluate the
payload throughput available at various
transmission baud rates, which is
validated by in-system measurements.
Finally all results are summarized and an
outlook on future developments regarding
calibration over CAN FD is given.

The Open System Interconnection
Model Applied to XCP over CAN FD

In state of the art automotive networks
distributed service hosting and data
sharing is a commonly applied technique.
This requires a reliable, safe and efficient
technical solution to facilitate the network
communication. The Open System
Interaction (OSI) Model introduces [5] a
modular and maintenance friendly system
architecture. The OSI model separates the
various abstract communication
requirements into 7 interaction layers.
Each layer provides mechanisms for the
interaction between layers and the logical
connection between network nodes.
These rules are known as protocol.

iCC 2013 CAN in Automation

02-6

Figure 11: The Open System
Interconnection Model

Since layers are independent of each
other a system wide replacement of a
single layer implementation does not affect
other system layers.
With respect to the OSI model a
calibration task using XCP over CAN (FD)
maps protocols and the calibration use
case to the OSI layers like presented in
Table 3.
Like the CAN protocol, CAN FD applies to
the basic two layers of the OSI model.
Both protocols are based on a common
physical layer. This enables CAN FD to
reuse existing CAN transceiver hardware
and to make use of the same voltage
levels and bus topologies. The differences
of CAN versus CAN FD do only affect the
data link layer. According to the OSI
model, a system wide replacement of CAN
with the high performance protocol CAN
FD does not affect XCP or the calibration
application.

Table 3: Mapping of automotive protocols
to OSI layers.

Protocol OSI Layer

CAN (FD) Physical Layer,
Data Link Layer

XCP Transport Layer
Calibration Use Case Application Layer

To compare the performance of CAN and
CAN FD a model for the data throughput is
established and evaluated in the following
section.

Evaluation of the Data Transfer
Capabilities

The data throughput for CAN and CAN FD
is estimated by a comparison of the frame
size versus the payload size available for
calibration purposes. A hypothetical
busload of 100 % is assumed to calculate
the available data throughput. The
estimation is based on the size of every
frame section provided in Table 4 and
Table 5. Since CAN does not provide an
additional synchronization signal for signal
sampling, the transition slopes of the data
signals are used to synchronize recipients
to the transmitter node. To ensure, that
sender and receiver do not run out of
synchronization a change of the logical
level must be guaranteed within a defined
limit. The CAN protocol specifies such a
transition within 6 Bits. To ensure the
transitions even in data that does not
naturally provide them, CAN makes use of
a bit stuffing algorithm and inserts a
complementary bit after 5 equal bits.
Therefore the actual size of a CAN frame
depends on its content and cannot be
predicted universally. Hence the
throughput estimation for the payload
applies a best and a worst case scenario
where no respectively the maximum
amount of stuff bits are inserted into the
CAN (FD) frame.

Table 4: Field sizes of CAN Frames.
Name Size [Bit]

Start Of Frame 1
Arbitration Field 12

Control Field 6
Data Field ≤ 64
CRC Field 15

Acknowledge Field 2
End Of Frame 10

iCC 2013 CAN in Automation

02-7

Table 5: Field sizes of CAN FD Frames
(* applies to).

Name Size [Bit]
Start Of Frame 1
Arbitration Field 12

Control Field (1st part) 4
Control Field (2nd part) * 5

Data Field * ≤ 512
CRC Field * 18 / 222

Acknowledge Field 2
End Of Frame 10

The data throughput is basically the
quotient of the available payload
divided by the overall bit count of any
frame fields multiplied with the
transmission frequency (see (1)).

(1)

To serve the worst case scenario, the stuff
bits are added to the divisor (see (2)).

(2)

For the calculation of the data throughput
of CAN FD it has to be taken into account,
that major parts of the frame are
transmitted with the frequency (see (3)
for the best case and (4) for the worst
case scenario).

(3)

(4)

(5)

2 CRC polynoms with = 17 Bit are used
for payloads up to ≤ 16 Byte, whereas

 = 21 Bit apply to larger payloads.

Table 6: Definition of used terms

Term Definition
f Arbitration bit rate
fD Data bit rate

fT
Bit rate of the average

data throughput
bF Length of Frame/Bit
bD Length of Payload/Bit

bCRC Length of CRC/Bit

bCF2
Length of CAN FD part

of the control field

The calculation assumes a maximal
payload for CAN and CAN FD. Using the
later protocol the data bit rate should be
significant higher than the basic
transmission frequency . Hence, for the
payload and the CRC polynomial the bit
times are shorter and thus allow a higher
throughput. In comparison to the payload
transfer rate of CAN (see
Table 7), this increase of the speed is
reflected by the calculated data throughput
band, as presented in Figure 12 and Table
8.

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

f T
[M

Bi
t/
s]

fD [MBit/s]
Figure 12: Visualization of the calculated
throughput range.

Table 7: Calculated data throughput using
CAN with a payload of 8 Bytes
(kBit/s).

Scenario
[kBit/s]

Efficiency
[% of]

Best Case 288 58
Worst Case 244 49

iCC 2013 CAN in Automation

02-8

Table 8: Calculated data throughput using
CAN FD with a payload of 64 Bytes
(kBit/s).

[kBit/s]

 [kBit/s] Efficiency [%of]
Best
Case

Worst
Case

Best
Case

Worst
Case

500 451 378 90 76
1000 858 721 172 144
2000 1563 1323 313 265
4000 2656 2271 531 454
5000 3088 2650 618 530
8000 4084 3537 817 707

Summarizing the above evaluation, the
overall transfer rate boost of CAN FD is
within a range of factor 1.5 up to 14.

Verification of the Model by Measuring
XCP over CAN FD

To verify the evaluation provided in the last
section, an in system calibration process is
executed using XCP over CAN FD. The
measurement environment consisted of
Vectors measurement and calibration
software, CAN/CAN FD hardware and a PC
based Engine Control Unit Emulator with
equivalent behavior to an embedded ECU.
The transfer rate is examined by measuring
the bus communication time. The timing of
the data packages is measured between
the in- and output of the CAN/CAN FD
driver modules. An overview of the setup is
given in Figure 13.
The time difference measured represents
the time consumed to transmit the package
over the bus plus an additional unknown
delay caused by the CAN FD hardware
driver and the transceiver hardware.

Figure 13: Setup for the verification
measurement.

The measurements have shown that the
delay time of the driver stack could be
assumed to be constant. This leads to the
equation used for the correction of the
data transfer rate in (6) which is the
quotient of the corrected transmission
duration over the transferred amount of
payload data.

(6)

To verify practical calibration use cases
with the above stated model, the payload
probability distribution , occurring at
the investigated calibration process has to
be taken into account.

(7)

Table 9: Calculated data throughput for a
realistic calibration process using CAN FD

(kBit/s).

[kBit/s]

 [kBit/s]
Best Case

 [kBit/s]
Worst Case

500 407 341

1000 753 635
2000 1318 1119

4000 2130 1825

5000 2438 2095

8000 3126 2707

The bandwidth corridor has been
calculated using (7). The calculated results
are shown in Table 9. Compared to the
measured throughput (see Table 11) the
calculated bandwidth corresponds to the
presented model and confirms its
correctness (see Figure 14).

iCC 2013 CAN in Automation

02-9

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

f T
[M

Bi
t/
s]

fD [MBit/s]
Figure 14: Data throughput range and
measured data for the investigated
calibration use case.

Table 10: Measured data throughput for a
realistic calibration process using CAN

(kBit/s).

[kBit/s]

306 ± 12

Table 11: Measured data throughput for a
realistic calibration process using CAN FD
(kBit/s).

[kBit/s]

[kBit/s]

500 401 ± 21

1000 724 ± 46

2000 1189 ± 57

4000 1884 ± 172

5000 2316 ± 253

8000 2664 ± 298

Conclusion

Both CAN and CAN FD are restricted to
the OSI layers 1 and 2. Hence it is not to
be expected that an upgrade of OSI
compliant automotive networks such as
the improved CAN protocol will cause an
extensive impact on higher protocol layers.
On the basis of a calibration use case the
upgrade feasibility for an established
automotive network has been investigated
and proven. The study focuses on the
achievable data transfer rate for calibration
using CAN and CAN FD respectively. The
transfer rate is modeled mathematically
and tested against an in-system
measurement with a real system.
Depending on the selected data transfer
frequency, the mathematical model

predicts a payload bandwidth increase by
a factor of 1.3 up to 9, which has been
verified by the measured data (see Table
9, Table 10, Table 11).
This increase serves the requirement for
high data transfer rates of state of the art
automotive bus systems. It removes the
existing bottle neck of the CAN protocol
and hence enables higher level protocols
to transfer huge amounts of data within
short time. For this reason CAN FD is an
elegant and simple way to boost the data
transfer capabilities of established but
maxed out CAN bus systems.

Outlook

Any ECU firmware implemented with
respect to the ISO network layer model
enables a transparent and rapid
integration of a CAN FD driver. Thus
features like the enhanced transfer rate
can be used for any higher OSI layer
communication with a minimum of
integration effort. In practice a CAN FD
driver for the calibration master is provided
with the PC software which shifts the main
effort towards replacing the embedded
CAN driver in the ECU. The embedded
XCP Driver however will further provide
XCP packages of 8 Byte size only, which
is the maximum capacity of CAN frames.
Hence the XCP driver has to be extended
to hand up to 64 Byte wide XCP-packages
to the subjacent CAN FD Driver.

Physicalmedia

User	
 PC

XCP	
 Core

XCP	
 Driver

Calibration
Software

XCP	
 Driver

ECU

CAN	
 FD
DriverCAN

Driver
CAN	
 FD
Driver

Figure 15: Least required ECU software
changes accruing from an upgrade to
CAN FD.

To upgrade an established network with
minimal impact on the system and to
achieve an optimal payload transfer rate a
package concatenation feature should be
introduced to XCP on CAN FD.

iCC 2013 CAN in Automation

02-10

Established ECU firmware with CAN
access is restricted to an 8 Byte wide data
path. This allows an upgraded ECU to use
the high speed data transmission
frequency but not the full payload size of
CAN FD. Since small payloads decrease
the transmission efficiency due to multiple
frame headers it is favorable to pool small
XCP packages to fill a full size CAN FD
payload. This optimizes the data transfer
capabilities of the bus (see Table 16).

Figure 16: Bus occupation of small single
packages (top) versus concatenated
packages (bottom)

Package concatenation is not yet specified
as a feature for XCP on CAN (FD).
However a package concatenation feature
would be an optional transport layer
capability and would therefore further
improve the XCP performance. To
introduce package concatenation the XCP
driver of any system participating on the
bus has to support this feature.
Present research at Vector Informatik is
focused on these optional capabilities.
Vector is working on a proposal for an
update of the XCP specification to
introduce XCP package concatenation
over CAN FD. Also a demonstration
implementation as a proof of concept for
XCP package concatenation over CAN FD
is in preparation.

Armin Happel
Vector Informatik GmbH
Ingersheimer Str. 24
DE-70499 Stuttgart
Tel.: +49-711-80670-3624
armin.happel@vector.com
www.vector.com

Erik Sparrer
Vector Informatik GmbH
Ingersheimer Str. 24
DE-70499 Stuttgart
Tel.: +49-711-80670-3036
erik.sparrer@vector.com
www.vector.com

Oliver Kitt
Vector Informatik GmbH
Ingersheimer Str. 24
DE-70499 Stuttgart
Tel.: +49-711-80670-3027
oliver.kitt@vector.com
www.vector.com

Oliver Garnatz
Vector Informatik GmbH
Ingersheimer Str. 24
DE-70499 Stuttgart
Tel.: +49-711-80670-3615
oliver.garnatz@vector.com
www.vector.com

Peter Decker
Vector Informatik GmbH
Ingersheimer Str. 24
DE-70499 Stuttgart
Tel.: +49-711-80670-4805
peter.decker@vector.com
www.vector.com

iCC 2013 CAN in Automation

02-11

References
[1] CiA DS 301, CANopen application

layer and communication profile
[2] CiA DSP 302, Framework for CANopen

managers and programmable CANopen
devices

[3] Robert Bosch GmbH:
“CAN FD Specification Volume 1.0”;
http://www.bosch-semiconductors.de/
media/pdf_1/canliteratur/can_fd_spec.
pdf. (called 08/2013); 04/2012; 34
pages

[4] International Organization for
Standardization: “Road vehicles –
Controller area network (CAN) – Part
1: Data link layer and physical
signaling”; ISO 11898; 11/1999; 51
pages

[5] International Organization for
Standardization: “Information
technology – Open System
Interconnection – Basic Reference
Model: The Basic Model”; ISO 7498-1;
06/1996; 68 pages

[6] Decker, P(Vector Informatik GmbH):
„CAN FD – Flexible Tools for Flexible
Data Rates“ at CAN FD TechDay;
Detroit, USA; 10/2012; 26 slides

[7] Vector Informatik GmbH: “CAN FD
Flexible Datarate CAN an
Introduction”;
CAN_FD_Introduction.pptx (internal
source); Weilimdorf, Germany;
01/2013; 46 slides

