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Reprogramming of ECUs as well as their in-vehicle calibration are typical and 
important automotive use cases requiring high data rates. 
To meet the high timing requirements for reprogramming, techniques such as data 
reduction and parallelization have been used to optimize for CAN. Faster data 
protocols such as FlexRay and Ethernet have also been introduced. The first part of 
this case study compares these well-known and practice-proved measures with the 
capabilities of CAN FD. In particular its influences on the transport protocol and 
write/erase times of current hardware devices are demonstrated using a real 
environment. 
For in-vehicle measurement and calibration the ASAM XCP Working Group already 
has extended the current version 1.2 to include the XCP transport layer for CAN FD. 
The second part of this case study shows the potential of increased data throughputs 
now possible with CAN FD due to the higher payload size of 64 bytes. Also shown are 
possible future XCP protocol enhancements which support simple portability of 
existing AUTOSAR ECU implementations of the XCP slave. 
 
High Speed Flash Programming 
 
Due to the continuous raising complexity 
of ECUs and its software sizes, a fast and 
efficient way to re-program In-Vehicle 
ECUs has become more and more 
important. The improvements in the past 
have been driven mainly by two factors: 
optimal performance of the flash download 
sequence, and introduction of newer and 
faster bus systems such as FlexRay, 
Ethernet or CAN FD.  
As shown in Figure 1, the flash download 
can be divided into the three sequential 
phases, erase the flash memory, 
download and program segments of the 
software and afterwards verify if the data 
have been written successfully. 

 
Figure 1: Programming phases 
Optimizations have been concentrated to 
the download and programming phase. 
Since in most cases, the amount of data  
 

appears to be the bottleneck, the first 
approach was to apply a compression 
method which is adequate in performance 
and code reduction. In most cases, the 
LZSS1 has shown a very good balance 
between compression rates compared to 
the resource utilization in small- and mid-
sized microcontrollers. This can already 
provide a significant reduction in code size 
and download time of about 20-40% for 
little cost. The results are highly dependent 
on the entropy of data, but also on the 
performance of the microcontroller. 
A further way to improve the download 
time is the introduction of “Pipelined 
Programming” (aka ‘Early-Acknowledge’ or 
‘Double-Buffering’). The idea is to 
acknowledge the diagnostic service 
request “TransferData” immediately before 
the received data has been written to the 
flash memory. The message is then 
written to flash while the next one is 
received. Figure 2 shows the details of the 
diagnostic service flow. 

                                                
1Lempel-Ziv-Storer-Szymanski-Algorithm, a method to 
mark redundancy in a data stream. 
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Figure 2: Optimize the download time with 
Pipelined programming. 
Pipelined Programming shows the most 
beneficial effect when the data processing 
and programming time is smaller than the 
transmission time of a data segment. Even 
the combination with data compression 
provides an advantage when both can be 
done in parallel to the data reception. 
Since code can typically not be executed 
out of flash memory while it is 
programmed, the code parts for 
programming and communication must be 
executed out of RAM. In the following, an 
overview of the reprogramming time on 
different bus systems will be given, 
including CAN FD. 
 
Programming with FlexRay 
 
FlexRay is a time-triggered protocol with a 
bus speed of up to 10 Mbit/sec. All nodes 
on one network require a unique 
configuration for static and dynamic slots, 
slots per cycle, etc. The configuration is 
quite complex and essential to the 
performance of the system. On one hand 
the application requires space in the static 
slot for a reliable and time-triggered 
communication. On the other hand it is 
desirable to have several PDUs in one 
cycle with large payload for a fast 
diagnostic communication, e.g. for 
flashing, even though it’s been used only 
in an exceptional case. A typical 
configuration uses 4-8 PDUs in one cycle 
each with payload from 42 to 255 bytes for 
diagnostic communication between the 
tester and the ECU. For more PDUs in one 
cycle the FlexRay schedule needs to be 
switched to a separate reprogramming 
cycle. 

 
Figure 3: FlexRay configuration 
For a fast reaction to a service request 
from the ECU, transmission of responses 
should be possible in subsequent cycles, 
e.g. in subsequent or periodically in every 
4th cycle. 

 
Figure 4: Transmission rate with FlexRay 
communication (without programming) 
It can be seen in Figure 4 that the slot 
configuration has high influences to the 
data throughput, also the number of PDUs 
per cycle and the buffer size allocated for 
the TransferData service. 
Table 1 shows the transfer and 
programming time that can be achieved on 
a typical FlexRay bus configuration. The 
measures were taken from a configuration 
with 8 PDUs per cycle and 42 bytes 
payload, and 6 PDUs per cycle and 255 
bytes payload. The measure was taken 
with real programming sequentially and 
with pipelined programming. 
 
Table 1: Transfer and programming time 
on FlexRay (kByte/sec) 
 

FlexRay 
configuration 

Download rate (Kbyte/sec) 
Conventional 
Programming 

Pipelined 
Programming 

8 PDUs/cycle 
42 bytes / PDU 32-34 ~40 

6 PDUs/cycle 
255 bytes/PDU 40 60 
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Programming with Ethernet 
 
ISO13400-2 specifies the communication 
for Diagnostics over IP (DoIP). This 
protocol is also used for re-programming 
ECUs over Ethernet. The relevant 
diagnostic communication is done over the 
TCP protocol. The next figure shows the 
architecture of an Ethernet Bootloader. 
 

 
Figure 5: Architecture of an Ethernet 
Bootloader 
 
This Bootloader has been implemented on 
a microcontroller where the pure flash 
write time takes about 180kByte/sec.  
Experimental downloads with a bus speed 
of 100Mbit were done with different buffer 
sizes for the TransferData-service to see 
the influence of this parameter. The results 
are listed in the table below. 
Table 2: Transfer and programming time 
(kByte/sec) on Ethernet with different 
TransferData buffer sizes. 

TransferData 
buffer size 

Download rate 
(Kbyte/sec) 

1 kB 95 
4 kB 133 

16 kB 150 

 
Pipelined Programming has not been 
applied here. The size of the transfer 
segmentation has a direct influence on the 
download time. When using a 16kB buffer 
for one transfer segment, the download 
time reaches almost the throughput of the 
flash memory. The proportion of the data 
transmission time over Ethernet becomes 
relatively low compared to the write access 
time to the flash memory. 

Programming with CAN and CAN FD 
 
In this chapter measures of the rates with 
CAN and CAN FD are discussed. Since 
semiconductor manufacturers are still 
working on micros with an integrated CAN 
FD controller, an evaluation board was 
chosen where an FPGA with the BOSCH 
IP macros for CAN FD is connected to a 
microcontroller board.  
 

 
Figure 6: CAN FD Hardware environment 
for the evaluation project 
 
A standard UDS CAN-boot loader-
Software (FBL) has been used on the 
microcontroller. Only the communication 
specific layers needed to be adapted. The 
CAN-driver was exchanged to support the 
features of the CAN FD ASIC to transmit 
CAN-frames with up to 64 byte and bit rate 
switch (BRS) from 500kBaud up to 4 
MBaud. The transport layer was based on 
an extension of the ISO15765-2 protocol 
as currently discussed in ISO. The 
segmented data transfer service has been 
kept to a maximum size of 4095 bytes. 
This reduced the necessary extensions to 
the transport layer to a minimum. CANoe 
has been chosen as the download tool to 
perform the software download. The flash 
programming sequence and the transport 
layer functionality were implemented in a 
DLL used by CANoe. The architectural 
overview of the measurement system is 
shown in the figure below. 
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Figure 7: Architecture of the CAN FD 
Bootloader evaluation project. 
The theoretical transmission rate on CAN 
of the ISO15765-2 transport layer with 
block size and STmin set to 0 provides an 
average transmission rate of 26-28 
kByte/sec with 500 kBaud. On CAN FD, 
the DLC can be increased up to 64 which 
reduce the number of CAN-frames from 
586 CAN frames down to 66 frames for a 
4095 byte message. Using BRS with 
4MBaud the transfer rate for 4095 bytes 
takes theoretically 270-370 kByte/sec. In 
practice the overall download was 
measured and programming time with 
DLC=8, without (500 kBaud) and with BRS 
(4 MBaud); and with DLC=64, without and 
with BRS were applied. The following 
figure shows the resulting transfer and 
programming rate for CAN and CAN FD. 
 

 
Figure 8: Transfer and programming time 
in comparison to CAN and CAN FD. 
With DLC=8, without BRS, the overall 
programming time is getting close to the 
capability of the ISO15765 protocol on 
500kBaud. But using CAN FD with BRS a 
download and programming time with 
more than 80kByte/s can be reached. This 
is far away from the theoretical capabilities  
of the bus, because now the flash 
programming time of the internal memory  
 

becomes a limiting factor. Faster flash 
programming time would be required to 
speed up the download time. 
Even though these impressive data rates 
already exceed the capabilities of FlexRay, 
we want to further analyze the effect of 
compression and pipelining in combination 
with CAN FD.  

 
Figure 9: Download with CAN and CAN 
FD using plain, compressed, pipelined and 
combined programming. 
The diagram shows (in blue) an advantage 
of pipelined and compressed download 
with 500kBaud. The combination of 
pipelining and decompression further 
increases the download time in this 
configuration to 38kB/sec. As long as the 
transmission of a message takes longer 
than the decompression and 
programming, both methods shows an 
advantage. With CAN FD the portion of 
time for data transmission is very low 
compared to the programming time (ttr << 
tprog). Therefore, the pipelining shows only 
minor improvements. It becomes even 
worse if compression is used. In this case, 
the CPU-time for decompression will be 
added to the download time and provides 
the contrary effect. The following figure 
illustrates the execution time and the 
delaying effect of the decompression. 

 
Figure 10: CPU dispatching for plain, 
pipelined and pipelined&compessed 
download 
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It must be noted, that the programming 
library and the CPU performance were not 
optimal for this evaluation. Further 
measurements must be taken on other 
microcontrollers to measure the beneficial 
factors of pipelining and decompression.  
The measures show the capabilities of 
CAN FD to improve the download time. 
We can expect that now the programming 
time of the flash memory and the 
performance of the microcontroller will 
become the limiting factor for the overall 
programming time of an ECU.  
 
Conclusion 
 
Even though the measurements on the 
different buses have been taken on 
different controllers and therefore they are 
difficult to compare, a tendency can be 
seen that with Ethernet and CAN FD 
currently the bus speed exceeds the limits 
and the flash write time becomes now the 
limiting factor. This seems not to be the 
case for CAN and FlexRay. 
Ethernet shows the best performance, 
especially on 100Mbit buses. However, the 
complexity of the communication stack 
and network configuration is high and also 
higher costs for the hardware are 
expected. 
The FlexRay bus requires tricky 
configuration of the schedule to achieve a 
satisfactorily download performance, and 
this competes with the real-time data 
transmission in the static slot fields. The 
software complexity of the communication 
modules is higher than for CAN or CAN 
FD, but less than for Ethernet.  
Pipelined Programming shows benefits in 
all configurations but is limited for CAN FD 
and Ethernet.  
 
Outlook 
 
The increasing complexity of in-vehicle 
functions will result in an increased 
amount of code size. Fast buses are 
required to provide a faster reprogramming 
time of ECU software during development 
and for series production.   
 
 
 

CAN FD shows the capability to provide 
the performance in the future with 
adequate costs for software and hardware. 
Nowadays, the flash write time seem to 
become the limiting factor then, but steady 
improvements from chip manufacturers in 
flash erase and write time will then show 
benefits to the software download time. 
Thorough software architecture and data 
handling will be needed in the future within 
the boot loader to fetch full performance. 
 
In-Vehicle Measurement and 
Calibration 
 
The second part of this paper focuses on 
the data transfer capabilities available for 
calibration proposes using XCP on CAN 
FD. First the interchangeability of CAN 
and CAN FD is explained by means of the 
Open System Interconnection Model. The 
subsequent analytical part provides a 
mathematical model to evaluate the 
payload throughput available at various 
transmission baud rates, which is 
validated by in-system measurements. 
Finally all results are summarized and an 
outlook on future developments regarding 
calibration over CAN FD is given. 
 
The Open System Interconnection 
Model Applied to XCP over CAN FD 
 
In state of the art automotive networks 
distributed service hosting and data 
sharing is a commonly applied technique. 
This requires a reliable, safe and efficient 
technical solution to facilitate the network 
communication. The Open System 
Interaction (OSI) Model introduces [5] a 
modular and maintenance friendly system 
architecture. The OSI model separates the 
various abstract communication 
requirements into 7 interaction layers.  
Each layer provides mechanisms for the 
interaction between layers and the logical 
connection between network nodes. 
These rules are known as protocol. 
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Figure 11: The Open System 
Interconnection Model 
 
Since layers are independent of each 
other a system wide replacement of a 
single layer implementation does not affect 
other system layers. 
With respect to the OSI model a 
calibration task using XCP over CAN (FD) 
maps protocols and the calibration use 
case to the OSI layers like presented in 
Table 3.  
Like the CAN protocol, CAN FD applies to 
the basic two layers of the OSI model. 
Both protocols are based on a common 
physical layer. This enables CAN FD to 
reuse existing CAN transceiver hardware 
and to make use of the same voltage 
levels and bus topologies. The differences 
of CAN versus CAN FD do only affect the 
data link layer. According to the OSI 
model, a system wide replacement of CAN 
with the high performance protocol CAN 
FD does not affect XCP or the calibration 
application.  

Table 3: Mapping of automotive protocols 
to OSI layers. 

Protocol OSI Layer 

CAN (FD) Physical Layer, 
Data Link Layer 

XCP Transport Layer 
Calibration Use Case Application Layer 

 
To compare the performance of CAN and 
CAN FD a model for the data throughput is 
established and evaluated in the following 
section. 
 
 
 

Evaluation of the Data Transfer 
Capabilities 
 
The data throughput for CAN and CAN FD 
is estimated by a comparison of the frame 
size versus the payload size available for 
calibration purposes. A hypothetical 
busload of 100 % is assumed to calculate 
the available data throughput. The 
estimation is based on the size of every 
frame section provided in Table 4 and 
Table 5. Since CAN does not provide an 
additional synchronization signal for signal 
sampling, the transition slopes of the data 
signals are used to synchronize recipients 
to the transmitter node. To ensure, that 
sender and receiver do not run out of 
synchronization a change of the logical 
level must be guaranteed within a defined 
limit. The CAN protocol specifies such a 
transition within 6 Bits. To ensure the 
transitions even in data that does not 
naturally provide them, CAN makes use of 
a bit stuffing algorithm and inserts a 
complementary bit after 5 equal bits. 
Therefore the actual size of a CAN frame 
depends on its content and cannot be 
predicted universally. Hence the 
throughput estimation for the payload 
applies a best and a worst case scenario 
where no respectively the maximum 
amount of stuff bits are inserted into the 
CAN (FD) frame. 

Table 4: Field sizes of CAN Frames. 
Name Size [Bit] 

Start Of Frame 1 
Arbitration Field 12 

Control Field 6 
Data Field ≤ 64 
CRC Field 15 

Acknowledge Field 2 
End Of Frame 10 
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Table 5: Field sizes of CAN FD Frames  
(* applies to ). 

Name Size [Bit] 
Start Of Frame 1 
Arbitration Field  12 

Control Field (1st part) 4 
Control Field (2nd part) * 5 

Data Field * ≤ 512 
CRC Field * 18 / 222 

Acknowledge Field 2 
End Of Frame 10 

 
The data throughput is basically the 
quotient of the available payload  
divided by the overall bit count of any 
frame fields  multiplied with the 
transmission frequency  (see (1)).  

 
(1) 

To serve the worst case scenario, the stuff 
bits are added to the divisor (see (2)). 

 
(2) 

For the calculation of the data throughput 
of CAN FD it has to be taken into account, 
that major parts of the frame are 
transmitted with the frequency  (see (3)  
for the best case and (4) for the worst 
case scenario). 

 
(3) 

 

 
(4) 

 

 

 
(5) 

 

 

 

 

                                                
2 CRC polynoms with  = 17 Bit are used 
for payloads up to  ≤ 16 Byte, whereas 

 = 21 Bit apply to larger payloads. 

Table 6: Definition of used terms 

Term Definition 
f Arbitration bit rate 
fD Data bit rate 

fT 
Bit rate of the average 

data throughput 
bF Length of Frame/Bit 
bD Length of Payload/Bit 

bCRC Length of CRC/Bit 

bCF2 
Length of CAN FD part 

of the control field 
 
The calculation assumes a maximal 
payload for CAN and CAN FD. Using the 
later protocol the data bit rate  should be 
significant higher than the basic 
transmission frequency . Hence, for the 
payload and the CRC polynomial the bit 
times are shorter and thus allow a higher 
throughput. In comparison to the payload 
transfer rate of CAN (see  
Table 7), this increase of the speed is 
reflected by the calculated data throughput 
band, as presented in Figure 12 and Table 
8. 
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Figure 12: Visualization of the calculated 
throughput range. 
 
Table 7: Calculated data throughput using 
CAN with a payload of 8 Bytes  
(  kBit/s). 

Scenario   
[kBit/s] 

Efficiency 
[% of ] 

Best Case 288 58 
Worst Case 244 49 
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Table 8: Calculated data throughput using 
CAN FD with a payload of 64 Bytes 
(  kBit/s). 

 
[kBit/s] 

 [kBit/s] Efficiency [%of ] 
Best 
Case 

Worst 
Case 

Best 
Case 

Worst 
Case 

500 451 378 90 76 
1000 858 721 172 144 
2000 1563 1323 313 265 
4000 2656 2271 531 454 
5000 3088 2650 618 530 
8000 4084 3537 817 707 

 
Summarizing the above evaluation, the 
overall transfer rate boost of CAN FD is 
within a range of factor 1.5 up to 14. 
 
Verification of the Model by Measuring 
XCP over CAN FD 
 
To verify the evaluation provided in the last  
section, an in system calibration process is 
executed using XCP over CAN FD. The 
measurement environment consisted of 
Vectors measurement and calibration 
software, CAN/CAN FD hardware and a PC 
based Engine Control Unit Emulator with 
equivalent behavior to an embedded ECU. 
The transfer rate is examined by measuring 
the bus communication time. The timing of 
the data packages is measured between 
the in- and output of the CAN/CAN FD 
driver modules. An overview of the setup is 
given in Figure 13. 
The time difference measured represents 
the time consumed to transmit the package 
over the bus plus an additional unknown 
delay caused by the CAN FD hardware 
driver and the transceiver hardware. 
 

 
Figure 13: Setup for the verification 
measurement. 
 

The measurements have shown that the 
delay time of the driver stack could be 
assumed to be constant. This leads to the 
equation used for the correction of the 
data transfer rate in (6) which is the 
quotient of the corrected transmission 
duration over the transferred amount of 
payload data. 
 

 
(6) 

 
To verify practical calibration use cases 
with the above stated model, the payload 
probability distribution , occurring at 
the investigated calibration process has to 
be taken into account. 
 

 
(7) 

 

Table 9: Calculated data throughput for a 
realistic calibration process using CAN FD 

(  kBit/s). 

  
[kBit/s]  

 [kBit/s] 
Best Case 

 [kBit/s] 
Worst Case 

500 407 341 

1000 753 635 
2000 1318 1119 

4000 2130 1825 

5000 2438 2095 

8000 3126 2707 

 
The bandwidth corridor has been 
calculated using (7). The calculated results 
are shown in Table 9. Compared to the 
measured throughput (see Table 11) the 
calculated bandwidth corresponds to the 
presented model and confirms its 
correctness (see Figure 14). 
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Figure 14: Data throughput range and 
measured data for the investigated 
calibration use case. 
 
Table 10: Measured data throughput for a 
realistic calibration process using CAN 

(  kBit/s). 
 

 
[kBit/s]  

306 ± 12 

 

Table 11: Measured data throughput for a 
realistic calibration process using CAN FD 
(  kBit/s). 

  
[kBit/s]  

  
[kBit/s]  

500 401 ± 21 

1000 724 ± 46 

2000 1189 ± 57 

4000 1884 ± 172 

5000 2316 ± 253 

8000 2664 ± 298 

 
Conclusion 
 
Both CAN and CAN FD are restricted to 
the OSI layers 1 and 2. Hence it is not to 
be expected that an upgrade of OSI 
compliant automotive networks such as 
the improved CAN protocol will cause an 
extensive impact on higher protocol layers. 
On the basis of a calibration use case the 
upgrade feasibility for an established 
automotive network has been investigated 
and proven. The study focuses on the 
achievable data transfer rate for calibration 
using CAN and CAN FD respectively. The 
transfer rate is modeled mathematically 
and tested against an in-system 
measurement with a real system. 
Depending on the selected data transfer 
frequency, the mathematical model  
 

predicts a payload bandwidth increase by 
a factor of 1.3 up to 9, which has been 
verified by the measured data (see Table 
9, Table 10, Table 11). 
This increase serves the requirement for 
high data transfer rates of state of the art 
automotive bus systems. It removes the 
existing bottle neck of the CAN protocol 
and hence enables higher level protocols 
to transfer huge amounts of data within 
short time. For this reason CAN FD is an 
elegant and simple way to boost the data 
transfer capabilities of established but 
maxed out CAN bus systems. 
 
Outlook 
 
Any ECU firmware implemented with 
respect to the ISO network layer model 
enables a transparent and rapid 
integration of a CAN FD driver. Thus 
features like the enhanced transfer rate 
can be used for any higher OSI layer 
communication with a minimum of 
integration effort. In practice a CAN FD 
driver for the calibration master is provided 
with the PC software which shifts the main 
effort towards replacing the embedded 
CAN driver in the ECU. The embedded 
XCP Driver however will further provide 
XCP packages of 8 Byte size only, which 
is the maximum capacity of CAN frames. 
Hence the XCP driver has to be extended 
to hand up to 64 Byte wide XCP-packages 
to the subjacent CAN FD Driver. 
 

Physicalmedia

User	
  PC

XCP	
  Core

XCP	
  Driver

Calibration
Software

XCP	
  Driver

ECU

CAN	
  FD
DriverCAN

Driver
CAN	
  FD
Driver

 
 
Figure 15: Least required ECU software 
changes accruing from an upgrade to  
CAN FD. 
 
To upgrade an established network with  
minimal impact on the system and to  
achieve an optimal payload transfer rate a  
package concatenation feature should be  
introduced to XCP on CAN FD. 
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Established ECU firmware with CAN  
access is restricted to an 8 Byte wide data  
path. This allows an upgraded ECU to use  
the high speed data transmission  
frequency but not the full payload size of  
CAN FD. Since small payloads decrease  
the transmission efficiency due to multiple  
frame headers it is favorable to pool small  
XCP packages to fill a full size CAN FD  
payload. This optimizes the data transfer  
capabilities of the bus (see Table 16). 
 

  
Figure 16: Bus occupation of small single 
packages (top) versus concatenated 
packages (bottom) 
 
Package concatenation is not yet specified 
as a feature for XCP on CAN (FD). 
However a package concatenation feature 
would be an optional transport layer 
capability and would therefore further 
improve the XCP performance. To 
introduce package concatenation the XCP 
driver of any system participating on the 
bus has to support this feature. 
Present research at Vector Informatik is 
focused on these optional capabilities. 
Vector is working on a proposal for an 
update of the XCP specification to 
introduce XCP package concatenation 
over CAN FD. Also a demonstration 
implementation as a proof of concept for 
XCP package concatenation over CAN FD 
is in preparation. 
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