
XML-based Representation and Monitoring of CAN Devices

Dipl.-Inform. Dieter Bühler1, Prof. Dr.-Ing. Gerhard Gruhler2,3

1 Wilhelm-Schickard-Institut für Informatik, Symbolisches Rechnen, Universität Tübingen
2 Institut für angewandte Forschung in der Automatisierung (IFA), Fachhochschule Reutlingen

3 Steinbeis-Transferzentrum Automatisierung (STA), Reutlingen

Today, the integration of fieldbus devices into the business LAN of an enterprise is
usually accomplished by a proprietary OPC solution. This paper describes a more ge-
neric and platform independent approach to represent CAN system information and
to manage CAN process data. The CANopen Markup Language (CoML), an XML appli-
cation, was developed in conjunction with several Java CoML tools to achieve this
goal. The main benefit of using XML to describe CAN systems and CAN process data
lies in the standardized way to represent structured data enriched by meta-data. XML
and the corresponding Document Object Model form a basis for rapid development of
CoML applications which provide platform independent access, visualization and
storage of CANopen setup information and process data. Due to the intrinsic inter-
changeability of XML information, CoML documents can be processed and evaluated
not only by dedicated CoML applications but also by a wide variety of common XML
tools like XML editors or XML databases for example. Since XML documents are espe-
cially well suited to be deployed to the WWW, this approach also facilitates convenient
access to CAN data via the Internet.
This paper gives an introduction to the CANopen Markup Language, the EDS2CoML
translator and the CanInvestigator CAN monitoring tool.

1. Introduction

Large enterprises running lots of automation
systems at different locations face the problem
to somehow handle the huge amount of proc-
ess, configuration, and documentation data
provided or produced by monitoring systems
and configura-
tion tools. The
data further-
more tend to
be heterogene-
ous especially
if different
operating sys-
tems and
hardware plat-
forms are in
use. We aim to
move towards
a generic cen-
tral informa-
tion basis from
which inte-
grated but dedicated views can be generated in
order to allow convenient tuning and monitor-
ing of fieldbus-based automation systems.

In order to achieve this goal we decided to

[15] as the ubiquitous data format. XML
documents are used to describe CAN device
interfaces and CAN system information, to
hold CAN process data and to configure
monitoring attributes and (remote) access
privileges.

XML is an open standard with no operating
system or (pro-
gramming) lan-
guage depen-
dencies. The
Document Object
Model (DOM) [16]
in conjunction with
a wide variety of
free XML parsers
(e.g. [12]) form a
convenient basis
for rapid XML/
CoML tool devel-
opment. DOM im-
plementations are
available for lots of
programming lan-

guages like C/C++, Perl and Java. The number
of available XML tools (e.g. databases [11],
editors [8]) is rapidly growing and all XML
applications will automatically benefit from

CanInsightClient

User User

JDBC driver
db2java

JDBC driver
db2java

Database System (DB2)

Java CAN API
CanInvestigator

CanInsightServer

JCan .DLL
CAN driver

Internet
CoML CoML

CAN Devices

CoML CoML

EDS2CoML
EDS

CoML CoML

Figure 1: The CANInsight fieldbus management system

structured data with XML documents results in
a maximum degree of manageability and inter-
changeability of the information within the
system and even across the system boundaries.

In this paper we will give an introduction to
the CANopen Markup Language (CoML), our
XML application to represent CAN related
data, and present two CoML tools which are
actually subsystems of the CANInsight remote
CAN management system [4] (cf. Figure 1)
which we are developing at the moment. The
EDS2CoML subsystem translates CANopen
EDS files to valid CoML documents and the
CanInvestigator component provides monitor-
ing information of CAN automation systems
by creating corresponding CoML documents.

The paper will further present a comparison
between the CoML layout and the Profile Ex-
change Language [9] proposed by the IEC.

2. XML and DOM

This section gives a short and informal intro-
duction to XML and the Document Object
Model (DOM). Please refer to the XML 1.0
and DOM Level 1 specification for detailed
information.

XML documents are plain text files. The
character encoding (e.g. Unicode [13]) can be
explicitly specified in a declaration part of the
document. An XML document is well-formed
if the document and its sub-entities can be
derived from the formal XML grammar given
in the XML specification. XML documents are
logically structured by tags. A tag consists of a
pair of enclosing angle brackets, a tag name
and attributes. The part of a document from an
opening to the corresponding closing tag is
called an XML element. Since in XML the
tags have to be balanced (every opening tag
must have a corresponding closing tag) and the
resulting elements have to be nested correctly
within a single root element, the logical struc-
ture of every well-formed XML document is a
single rooted tree called the document tree.

The Document Object Model defined by the
W3C (www.w3c.org) is a set of abstract (pro-
gramming) interfaces which provide access to
the logical tree structure of an XML document.
An implementation of these interfaces allows
easy creation, modification, and analysis of
XML document trees. DOM implementations
are available for lots of different programming
languages (e.g. Java API for XML Parsing

XML is designed as a meta-language and
provides the Document Type Definition (DTD)
concept to specify document classes. Among
other things, the DTD lists the known tags, the
allowed element nesting and element attrib-
utes. If a well-formed XML document meets
all restrictions given in a referenced DTD the
document is called valid. In other words: Valid
documents are instances of the document class
defined by the corresponding DTD.

3. The CANopen Markup Language
(CoML)

The CoML Document Type Definition [5] is a
grammar which restricts the set of all well-
formed XML documents to a class of docu-
ments describing CANopen device profiles,
CANopen system configurations and
CANopen process data. For each of the named
purposes there exists a corresponding XML
element which is able to represent the required
information.

CANopen Device Profiles : The element Mod-
ule represents CANopen device profiles. The
structure of this element and the naming of its
subelements and their attributes (cf. Figure 2)
are directly derived from the CANopen Elec-
tronic Data Sheet (EDS) [6] format. All infor-
mation that may be contained within an EDS
can be represented by a corresponding Module
element. In fact the Module information nor-
mally is a true superset of the EDS information
since some additional parameters (e.g. the
Mute attribute cf. Section 5) were integrated
into the device profile description.

The EDS2CoML tool (cf. Section 4) per-
forms an automatic translation from the EDS
format to CoML and vice versa. The device
profile description can also be written from
scratch with a general purpose XML editor
(e.g. [8]). The editor can keep track of the cor-
rectness of the document by double-checking
the referenced CoML DTD while the docu-
ment is created.

CANopen Process Data: The CanInvestigator
component retrieves complete parameter im-
ages of (running) CANopen automation sys-
tems. The gathered information is represented
by a single CoML document within a StateIn-
formation element (cf. Figure 4). The StateIn-
formation element is a compact format for

Figure 2: CoML device profile description in a
general purpose XML editor

storing current parameter values together with
the corresponding CAN module IDs and index
values.

A detailed description of CoML is beyond the
scope of this paper and can be found in [3].

4. The EDS2CoML Translator

The EDS2CoML tool translates EDS files to
CoML documents and vice versa It provides a
standard CoML text view and an interactive
CoML tree view which provides convenient
access to selectable parts of the device profile
information. In the EDS text mode the
EDS2CoML tool behaves like a standard text
editor with cut ‘n’ paste and search functional-
ity. The translation (in both directions) is initi-
ated just by selecting the corresponding view
mode.

The tree view is implemented as a standard
Java JTree component. In order to let a JTree
work on an XML DOM we created the new
class TreeElement (cf. www-sr.informatik.uni-
tuebingen.de/CanInsight/doc/). This class is
derived from com.sun.xml.tree.ElementNode

Figure 3: The interactive tree view of the
EDS2CoML translator

implements the javax.swing.tree.TreeNode
interface (which is part of the Java core stan-
dard). The implementation of the TreeNode
interface calls the corresponding DOM meth-
ods of the ElementNode class to let XML
nodes behave like Java JTree nodes.

The allocation of TreeElement objects in-
stead of ElementNode objects during the DOM
creation is configured by passing a corre-
sponding property sheet to the ElementFactory
object associated with the XML parser in-
stance.

The EDS2CoML translator uses a validating
parser and echos all XML errors and warnings
to the Translation Log view. Thus, all EDS
conformance restrictions that are expressible in
DTD syntax are automatically checked during
the translation and may be used as a first step
in an EDS conformance test.

5. The CanInvestigator Monitoring Compo-
nent

The CanInvestigator CAN monitoring compo-
nent produces CoML documents containing
the parameter images of the connected devices.
The monitoring is configured by the Module
elements (cf. Section 3) of an initialization
CoML document which is read by CanInvesti-
gator at startup time. It provides all necessary
information to compute an index of all read-
able parameter values of all connected devices.

mute attribute of the Object element, allowing
a fine grained definition of the relevant pa-
rameter set.

When the monitoring is triggered either by
an external request (e.g. from the CANInsight
client) or by an internal cyclic signal, the
CanInvestigator component requests all in-
dexed parameters via a corresponding
CANopen Service Data Object. The retrieved
parameter values are decoded according to [7]
and stored in a CoML StateInformation ele-
ment which allows a compact representation of
the system state (cf. Figure 4). The corre-
sponding Module element information is refer-
enced via the LocationId attribute of the State-
Information element.

The CanInvestigator is implemented in Java
and can be used as a stand-alone CAN moni-
toring application that produces CoML State-
Information documents with a specific fre-
quency or as a software component providing
CoML parameter images from within a differ-
ent Java application. For example, the CANIn-
sight server uses a CanInvestigator instance to
create CoML state information documents
which are transferred to remote clients by
means of Java Remote Method Invocation.

The access to the CAN hardware is managed
by our Java CAN API [2] which forms a con-
venient framework for rapid CAN/CANopen
tool development by encapsulating generic
CAN layer 2 messages as well as CANopen

setup we use a CANCardX from Vector Infor-
matik (www.vector-informatik.de) in conjunc-
tion with our JCan.DLL [1] which performs
the message filtering, message notification and
Java to C++ code mediation.

The creation of a complete parameter image of
a DIOC711 I/O module from Selectron
(www.selectron.ch) for example takes about
770 milliseconds on a Pentium II 350
MHz/WinNT system and a CAN baud rate of
125000.

6. The Profile Exchange Language

The Profile Exchange Language (proposed in
IEC 61915 [9]) defines a common repre-
sentation of networked industrial devices
and provides a template for documenting
that representation independent of the
controller device interface used. An
XML DTD is provided for the descrip-
tion of generic device profiles.

While the general idea and the specifi-
cation itself seems to be sound, the pro-
vided mapping to an XML representa-
tion does not exploit the structural ex-
pressiveness of XML. For example, [9,
Section 4.5.2.4] describes how to encode
the profile classification into one single
string value which is mapped onto one
XML element with no internal structure.
Since the profile classification consists
of information about the provided auto-
mation function and the device type
identifier, it should have a corresponding
internal structure that allows direct ac-

cess to the internal information and should not
require further non-XML parsing

There are a few more sections in the speci-
fication where the XML specification seems to
be too flat in the same way as described above.
This seems not to be too hard to handle but
there is a further major drawback in the pro-
vided XML mapping. As depicted in Figure 5,
the value of a described parameter (Par.-Value)
is mapped onto the same hierarchical level as
the parameter description (Parameter) and not
onto a child element of the description like it is
done in CoML. This requires the two elements
to be linked together via some kind of explicit
reference.

Besides the risk of producing dangling ref-
erences when deleting or updating parameter

Figure 4: CoML process data

pensive to handle by an application. For in-
stance, let the application be interested in the
current value of a parameter which is identified
by its description. First, the application has to
traverse the DOM to retrieve the parameter
description and the reference to the parameter
value element. In the Profile Exchange Lan-
guage this reference is the name of the pa-
rameter. Second, the application now has to
traverse the DOM a second time, until it re-
trieves the specific parameter value element
which holds the same parameter name subele-
ment like the parameter description element
does. In contrast, the CoML DOM allows di-
rect access to parameter values via the pa-
rameter description since the parameter value
element is simply a subelement of the pa-
rameter description (cf. Figure 5).

The Profile Exchange Language often uses
explicit references in the way described above
as would be adequate in the context of rela-
tional databases, but in XML this approach
makes the resulting document object models
hard and expensive to handle. Furthermore,
modern native XML databases (like the
Tamino system) can be used to store the pro-
file descriptions without the need to break
down the hierarchical structure of XML to a
flat relational data layout.

In general, it would be possible to extend the
Profile Exchange Language with the CoML
elements (cf. Figure 5) but at the current stage
we would suggest not to do this because of the
drawbacks stated above.

profileexchangelanguage.dtd

Device Header

StateName

StateID

S.-Trans.-Cmd

S.-Transition

OptionHeader

ProfileID

Version

Description

P.-Name

DataType

Eng.Units

P.-Name

Par.-Value

ValueDesc.

A.-Name

Access

Required

A.-Name

P.-Name

...

...

...

...

...

ProfileClass.

ReleaseDate

Aut.Func.Name

Dev.Type.Name

UnitMult.

Min/Max

Access

Required

Description

Start/End.Byte

Start/End.Bit

Parameter

Par.-Value

Assembly

AssemblyMap

CoML.dtd
CoML Module EdsFileInfo FileName

FileVersion

...

ObjectDict. StdDtTypes

DummyUsg

MandatoryO.

OptionalO

DeviceInfo Vendor

Product

Baudrate

...BootMode

Name

...

Name

...

Version

Index
Subindex

Obj.Type
DataType

PDOMap.

...

P.-Name

P.-Value

Comments

...

rate20

...
rate100

Mute

Object

Object

Lines

...

Sim.B.Slave

...

Sim.B.Mastr

CanSetup

StateInfo.

MetaInfo.

Module

ModuleID

...

Device

Index

Subindex

Value

TimeSt.

LogEntry

 Figure 5: The Profile Exchange Language vs. CoML

7. Related Work

The OPC Foundation (www.opcfoundation.-
org) announced in December 1999 that it plans
to publish XML schema for OLE for Process
Control (OPC) to improve business-to-
business and business-to-consumer computing
[10]. OPC enables applications to retrieve
process data using standardized Component
Object Model (COM) interfaces. OPC is inher-
ently restricted to the Windows operating sys-
tem and is usually addressed by Microsoft
Visual Basic or ActiveX applications.

Wollschlaeger [14] discusses the general ad-
vantages of describing fieldbus devices with
general modeling languages and presents some
DTD declarations to describe CANopen device
profiles. Issues like monitor configuration or
process data representation are not discussed.

8. Summary

XML is a standardized means to represent
structured data in a platform and (program-
ming) language independent way. The soft-
ware industry offers a rapidly growing number
of XML tools and programming libraries for
all kinds of appliances resulting in an im-
proved manageability and interchangeability of
the data.

The CANopen Markup Language provides
a means for representing CAN related data in
XML. CoML documents can be processed,
analyzed, and visualized with dedicated CoML
tools or general purpose XML tools. CoML
documents are used to represent CAN device
profiles, system setup information, process
data, and access context related data for system
monitoring and remote access facilities.

The EDS2CoML translator can be used to
automatically generate CoML device profile
representations from EDS information or to
generate EDS files from CoML information.

The CanInvestigator component autono-
mously creates customizable parameter images
of (running) CANopen systems by creating
corresponding CoML documents. These
documents can be stored in XML databases or
transferred via a network for remote mainte-
nance and management purposes.

References

[1] D. Bühler, G. Nusser, G. Gruhler, W.
Küchlin: „A Java Client/Server System
for Accessing Arbitrary CANopen
Fieldbus Devices via the Internet”,
South African Computer Journal, No.
24, Nov. 1999, p. 239 - 243, ISSN:
1015-7999.

[2] D. Bühler, G. Nusser: „The Java CAN
API - A Java Gateway to Fieldbus
Communication”, Proceedings of the
3rd IEEE Workshop on Factory Com-
munication Systems (WFCS 2000),
Sep. 2000, Porto, Portugal, IEEE
Computer Society Press (to appear).

[3] D. Bühler: “The CANopen Markup
Language - Representing Fieldbus
Data with XML”, Proceedings of the
IEEE International Conference on In-
dustrial Electronics, Control and In-
strumentation (IECON 2000), Oct.
2000, Nagoya, Japan, IEEE Computer
Society Press (to appear).

[4] D. Bühler, W. Küchlin: “Remote
Fieldbus System Management with
Java and XML”, Proceedings of the
IEEE International Symposium on In-
dustrial Electronics (ISIE 2000), Dec.
2000, Puebla, Mexico, IEEE Computer
Society Press (to appear).

[5] D. Bühler: “The CoML DTD”,
http://www-sr.informatik.uni-
tuebingen.de/CanInsight/CoML.dtd

[6] CAN in Automation e.V.: “Electronic
Data Sheet Specification for
CANopen”, CiA Work Draft 306, Re-
vision 0.3, Sep. 1999, Erlangen, Ger-
many
http://www.can-cia.de

[7] CAN in Automation e.V.: “CMS Data
Types and Encoding Rules”, CiA
DS202-3, Feb. 1996, Erlangen, Ger-
many
http://www.can-cia.de

[8] Icon Informations Systeme GmbH,
XML Spy,
http://www.xmlspy.com

[9] International Electrotechnical Com-
mission (IEC): “Low-voltage switch-
gear and controlgear - Profiles for net-
worked industrial devices”, Draft IEC
61915, Feb. 2000,
http://www.iec.ch

[10] OPC Foundation: “OPC and Microsoft
start XML initiative”, OPC Quarterly,
2(4), Dec. 1999
http://www.opcfoundation.org

[11] Software AG, Tamino – Native XML
Database System,
http://www.softwareag.com/tamino/

[12] SUN Microsystems: Java API for
XML parsing (JAXP),
http://java.sun.com/xml/-
download.html

[13] The Unicode Consortium: “The
Unicode Standard, Version 2.0”,
Addison Wesley Developer Press,
Reading Massachusetts, 1996

[14] M. Wollschlaeger: “CANopen Device
Descriptions using general purpose
modeling languages”, Proceedings of
the 6th International CAN Conference
(ICC), 1999, CAN in Automation, Er-
langen, Germany

[15] World Wide Web Consortium (W3C):
“Extensible Markup Language (XML)
1.0”,
http://www.w3c.org/TR/REC-xml

[16] World Wide Web Consortium (W3C):
“Document Object Model (DOM)
Level 1 Specification”,
http://www.w3c.org/TR/REC-DOM-
Level-1

Acknowledgement
This paper is partially based upon work con-
ducted within the research consortium VVL
funded by the German state of Baden-
Württemberg through the research initiative
Virtuelle Hochschule.

1Universität Tübingen
WSI – Symbolisches Rechnen
Sand 13
72076 Tübingen, Germany
buehler@informatik.uni-tuebingen.de
www.informatik.uni-tuebingen.de/~buehler

2, 3 Fachhochschule/STA Reutlingen
Alteburgstr. 150
72762 Reutlingen, Germany
Phone: 0049 7121 271331
Fax: 0049 7121 25713
gerhard.gruhler@fh-reutlingen.de
http://www.fh-reutlingen.de/~www-sta/

